Equivalence of PDAs and
Grammars



Theorem: Every language described by a context-free grammar is
accepted by a PDA.

Construction: Start with a grammar for the language, where S is the
start symbol. Make a start state Q for the DFA and begin

“=Q
—>

For each grammar rule A => A ..A, add transition

eA|AL. A,

'

Q

i.e. push A, then A, ,, etc., finally pushing A,.



Construction continued: For each input symbol a in X add the
transition

a,ale

'

Q

This completes the construction. Note that the DFA has only one
state. It accepts by empty stack.



Example:

+,+ | e etc.
E=>E+T | T 0,0]¢

e, E|T etc.
T=> T*F | F E| E+T

F => F digit | digit L

".a

Following is a configuration analysis that shows this DFA accepts 3+4*5



(Q, 3+4*5, E) => (Q. 3+4*5, E+T)

=>(Q,3+4*5, T+T

=>(Q,3+4*5, F+

=> (Q,3+4*%5, 3+

=>(Q,4*5, T)
=>(Q,4%*5, T*F)
=>(Q,4%*5, F*F)
=>(Q,4*5, 4*F)
=>(Q,*5, *F)
=>(Q,5, F)
=>(Q,5,5)

)
)

)

=>(Q,¢,e) accept




Now, how do we know this PDA accepts the language generated by
the grammar?

Suppose string w is generated by the grammar. Then there is a
derivation of w that always expands the left-most nonterminal symbol:
E=>E+T
=>T+T
=> F+T
etc.
At each step i let A, be the left-most nonterminal, o, everything to its
left, and [, everything to its right so the phrase that has been derived
is oA [3;and all of the symbols in o, are terminal.



The automaton has been constructed so that at step i of the
automaton computation the stack will be A 3. and the o, symbols of

the input will have been consumed. In other words, an easy
induction shows that

(QwS) :*\'(Q' w-o;, Af3;)

So eventually (Q,w,S) =(Q, ¢,e) and the automaton accepts w.




On the other hand, suppose that for a nonterminal symbol A

(Q, w, A)= (Q,¢,e).We will show by induction that there is a grammar
derivation of w from symbol A. The induction is on the number of
moves made by the automaton.

Base case: There must be a grammar rule A=>a and w=a.

Inductive case: Suppose this is true for all strings accepted by the PDA
in n moves and the PDA accepts w in n+1 moves.

Since the configuration (Q, w, A) starts with a nonterminal at the top
of the stack the first move must be using a rule A=>X,..X,. For each i
let w, be the string of input needed to remove X, from the stack, i.e.,

(Q;Wilxi) = (nglg)
By induction X;:=> w..




Altogether A => X,..X, = w,..w,=w. So if the automaton accepts w the
grammar derives w.



Theorem (Chomsky): Given a PDA that accepts by empty stack, we can
find a context free grammar that generates the set of strings accepted
by the PDA.

Construction: This builds a huge grammar whose derivations mimic
the configurations of the PDA.

Step 1. The nonterminal symbols of the grammar are a new start

symbol S and all symbols of the form [pXqg] where p and g are states
of the PDA and X is any one stack symbol

[pXq] will generate all strings w so that (p,w,X) =(q,¢,¢)
i.e., all strings w that take the PDA from state p to state g while
popping X off the stack.



Step 2. Grammar rules

Rule 1: If Q is the start state of the PDA and Z, is the stack bottom
symbol then for every state p add the grammar rule

S => [onp]
i.e., S will generate all strings that take the PDA from Q to any other
state while emptying the stack.




Rule 2: Suppose the PDA has transition

@aXlY Yk®

Then for every sequence of k states r,..r, add the rule
[gXr ] =>a[rY,r][r,Y,r,] ... [r.,Y, 1]

i.e., the strings that take the PDA from q to r, while removing X from
the stack include those that

first consume a and move fromqgtor

then consume anything generated by [rY,r,]

then consume anything generated by [r,Y,r,]

etc.

= w e



Rule 3: If there is a transition

@ ==

then add the rule
[gXr] => a



Rule 4: If there is a transition

@ & X|Y..Y, @
—

then for any sequence of states r,..r, add the rule

[gXr ] =>[rY,r]lr,Y,r,] ... [r Y, 1]



Rule 5: If there is a transition

@ ==

then add the rule

[gXr] => ¢

This is the complete construction.



Example: The following automaton accepts {0"1" | n >= 0} by empty stack

0,0 | 00

s,X|zoz’ g,X| X @S &2, € @

Here is a derivation of 0011 with the constructed grammar:
S =>[0,Z,a,] Rule 1 with p=q, since Z, is popped at q,.
0,2,|0Z,

=>0[a,0q,1[q,Z,a,] Rule2with ¥

q,r=qo, 1=4y, 1,=9;



=>00[q,0q;,1[q9,0q,][q9,Z,9,]

Rule 2 with
q;rqul
r1=r2=q1

=>00[0,09;,1[9,00,][a,Z,9,]

Rule 4 with
r=q,=r,

0,000



1,0|¢

=>0011[q,Z,9,] Cq‘j

Rule 3 twice with

=> (0011

Rule 5 with @ ohly @



Another example 1.X | 1X 11]
0,X| 0X 0,0|¢

8,X|ZO‘ g,X|X @ A @

This accepts by empty stack {ww"™" | we (0+1)* }
We will derive 0110 from the constructed grammar.

S =>[a,Z,9,] Rule 1
=> O[ggojll[qlzoqz] 0,2,|02,
Rule 2 with "2

=Qo, 11=d4, =0,



=>01[q,19,][q,0q,][0;Z,a,]

1,0 | 10

Rule 2 with 2

r=0o, M1=d1, 1,50,

=>01[q,10,1[q,00;,][a,Z,a,]

Rule 4 with
r=q1, rl=q1l

=>0110[q,Z,9,] Rule 3 twice

=> 0110 Rule 5



Lemma 1: If string w can take the PDA from state g to state p while

popping X off the stack then [gXp]=w. As a consequence, if w is
accepted by the PDA it is generated by the grammar.
Proof of Lemma 1: Induction on the number of steps the PDA takes

to transform configuration (q,w,X) to (p,€,€)
Base case: 1 step. The step must be (q,w,X) => (p,€,€) so the PDA
must have a transition

@)= )

This means the grammar has a rule [gXp] =>a (Rule 3)



Inductive case: Suppose the lemma is true for all strings w that take n
or fewer steps in the configuration computation, and w takes n+1
steps. The first step must use a transition of the form

@ a,X|Y1..Yk®
ALY

By Rule 2 the grammar will have a rule of the form
(*) [aXpl=>al[rY,r][r,Y,r1,])...[r, Y, p] for any sequence (r;) of states.

Let w, be the input that pops Y, off the stack; let r, be the state where
this is completed.

By the inductive hypothesis we must have (**) [r.,Y.r]=w,



Putting (*) and (**) together we have

[gXp] =aw,w,..w, =w



Lemma 2: If [gXp]=Ww then (q,w,X) = (p,€,€). As a consequence, if a
string is generated by the grammar it is accepted by the PDA.
Proof of Lemma 2: We do induction on the number of steps in the

grammar derivation [gXp]=>w.
Base case: 1 step. There must be a rule [gXp]=>a, so it must come

from a transition

@ 5 (p

So (g,3,X) = (p,€,€)



Inductive case: Suppose this is true of all derivations of n or fewer
steps and we have one with n+1 steps.
The first step must have the form [gXp]=>al[ry,r,][r,Y,1,])...[r Y, P]

For this to be a grammar rule the PDA must have a transition

@ a,X|Y,. Yk®

Each [r,,Y.r.] symbol must generate a string of terminal symbols; call
this string w..

By induction (r,,,w, y.) = (r,&,€)



In other words the automaton goes through a series of transitions:

@ LD = e

w, pops Y, w, pops Y, Wi POps Yy
off the off the off the
stack stack stack

l.e., aw,w,..w, takes the automaton from q to p while popping X
off the stack.



