
Equivalence of PDAs and 
Grammars



Theorem: Every language described by a context-free grammar is 
accepted by a PDA.
Construction: Start with a grammar for the language, where S is the 
start symbol.  Make a start state Q for the DFA and begin

Qe,e|S

e,A|A1...Ak

For each grammar rule A => A1..Ak add transition

Q

i.e. push Ak, then Ak-1, etc., finally pushing A1.



Construction continued: For each input symbol a in S add the 
transition 

a,a|e

Q

This completes the construction. Note that the DFA has only one 
state. It accepts by empty stack.



Example:
E => E+T | T
T => T*F | F
F => F digit | digit  

+, + | e  etc.
0, 0 | e 

e, E | T   etc.
e, E| E+T

Q
e,e|E

Following is a configuration analysis that shows this DFA accepts 3+4*5



(Q, 3+4*5, E) => (Q. 3+4*5, E+T)
=> (Q,3+4*5, T+T)
=> (Q,3+4*5, F+T)
=> (Q,3+4*5, 3+T)
=> (Q,4*5, T)
=> (Q,4*5, T*F)
=> (Q,4*5, F*F)
=> (Q,4*5, 4*F)
=> (Q,*5, *F)
=> (Q,5, F)
=> (Q,5,5)
=>(Q,e,e)   accept



Now, how do we know this PDA accepts the language generated by 
the grammar? 

Suppose string w is generated by the grammar.  Then there is a 
derivation of w that always expands the left-most nonterminal symbol:

E => E+T
=> T+T
=> F+T

etc.
At each step i let Ai be the left-most nonterminal, ai everything to its 
left, and bi everything to its right so the phrase that has been derived 
is aiAibi and all of the symbols in ai are terminal.



The automaton has been constructed so that at step i of the 
automaton computation the stack will be Aibi and the ai symbols of 
the input will have been consumed.  In other words, an easy 
induction shows that

(Q,w,S) ֜
∗

(Q, w-ai,Aibi)  

So eventually (Q,w,S) ֜
∗

(Q, e,e) and the automaton accepts w.



On the other hand, suppose that for a nonterminal symbol A

(Q, w, A)֜
∗

(Q,e,e).We will show by induction that there is a grammar 
derivation of w from symbol A. The induction is on the number  of 
moves made by the automaton.

Base case: There must be a grammar rule A=>a and w=a.
Inductive case: Suppose this is true for all strings accepted by the PDA 
in n moves and the PDA accepts w in n+1 moves.
Since the configuration (Q, w, A) starts with a nonterminal at the top 
of the stack the first move must be using a rule A=>X1..Xk.  For each i
let wi be the string of input needed to remove Xi from the stack, i.e.,

(Q,wi,Xi) ֜
∗

(Q,e,e)

By induction Xi֜
∗

wi.



Altogether A => X1..Xk ֜
∗

w1..wk=w.  So if the automaton accepts w the 
grammar derives w.



Theorem (Chomsky): Given a PDA that accepts by empty stack, we can 
find a context free grammar that generates the set of strings accepted 
by the PDA.
Construction: This builds a huge grammar whose derivations mimic 
the configurations of the PDA.

Step 1. The nonterminal symbols of the grammar are a new start 
symbol S and all symbols of  the form [pXq] where p and q are states 
of the PDA and X is any one stack symbol

[pXq] will generate all strings w so that (p,w,X) ֜
∗

(q,e,e)
i.e., all strings w that take the PDA from state p to state q while 
popping X off the stack.



Step 2. Grammar rules
Rule 1: If Q is the start state of the PDA and Z0 is the stack bottom 
symbol then for every state p add the grammar rule

S => [QZ0p]
i.e., S will generate all strings that take the PDA from Q to any other 
state while emptying the stack.



Rule 2: Suppose the PDA has transition

q ra,X|Y1..Yk

Then for every sequence of k states r1..rk add the rule
[qXrk] => a[rY1r1][r1Y2r2] ... [rk-1Ykrk]

i.e., the strings that take the PDA from q to rk while removing X from 
the stack include those that

1. first consume a and move from q to r
2. then consume anything generated by [rY1r1]
3. then consume anything generated by [r1Y2r2]
4. etc.



Rule 3: If there is a transition

ra,X|eq

then add the rule  
[qXr] => a



Rule 4:  If there is a transition

re,X|Y1..Ykq

then for any sequence of states r1..rk add the rule

[qXrk] => [rY1r1][r1Y2r2] ... [rk-1Ykrk]



Rule 5:  If there is a transition

re,X|eq

then add the rule

[qXr] => e

This is the complete construction.



Example: The following automaton accepts {0n1n | n >= 0} by empty stack

q0 q1 q2
e,X|X e,Z0|ee,X|Z0X

0,0 | 00
0,Z0|0Z0

1,0|e

Here is a derivation of 0011 with the constructed grammar:
S => [q0Z0q2] Rule 1 with p=q2 since Z0 is popped at q2.

=> 0[q00q1][q1Z0q2]  Rule 2 with
q,r=q0, r1=q1, r2=q2

q0

0,Z0|0Z0



=> 00[q00q1][q10q1][q1Z0q2]

Rule 2 with
q,r=q0,
r1=r2=q1

=> 00[q10q1][q10q1][q1Z0q2]

Rule 4 with
r=q1=r1

q0

0,0|00

q0 q1
e,X|X



=>0011[q1Z0q2]
Rule 3 twice with

=> 0011
Rule 5 with 

q1

1,0|e

q1 q2
e,Z0|e



Another example

q0 q1 q2
e,X|X e,Z0|ee,X|Z0X

1,X | 1X
0,X|0X

1,1| e
0,0|e

This accepts by empty stack {wwrev | w𝜖 (0+1)* }
We will derive 0110 from the constructed grammar.

S => [q0Z0q2] Rule 1

=> 0[q00q1][q1Z0q2]  
Rule 2 with
r=q0, r1=q1, r2=q2

q0

0,Z0|0Z0



=> 01[q01q1][q10q1][q1Z0q2]

Rule 2 with
r=q0, r1=q1, r2=q1

=> 01[q11q1][q10q1][q1Z0q2]

Rule 4 with
r=q1, r1=q1

=> 0110[q1Z0q2] Rule 3 twice

=> 0110 Rule 5

q0

1,0 | 10



Lemma 1: If string w can take the PDA from state q to state p while 

popping X off the stack then [qXp]֜
∗

w.  As a consequence, if w is 
accepted by the PDA it is generated by the grammar.
Proof of Lemma 1: Induction on the number of steps the PDA takes 
to transform configuration (q,w,X) to (p,e,e)
Base case: 1 step. The step must be (q,w,X) => (p,e,e) so the PDA 
must have a transition

This means the grammar has a rule [qXp] => a   (Rule 3)

q p
a,X|e



Inductive case:  Suppose the lemma is true for all strings w that take n 
or fewer steps in the configuration computation, and w takes n+1 
steps.  The first step must use a transition of the form

By Rule 2 the grammar will have a rule of the form
(*) [qXp]=>a[rY1r1][r1Y2r2]...[rk-1Ykp] for any sequence (ri) of states.

Let wi be the input that pops Yi off the stack; let ri be the state where 
this is completed.

By the inductive hypothesis we must have (**)    [ri-1Yiri]֜
∗

wi

q r
a,X|Y1..Yk



Putting (*) and (**) together we have

[qXp] ֜
∗

aw1w2...wk=w



Lemma 2: If [qXp]֜
∗

w then (q,w,X) ֜
∗

(p,e,e). As a consequence, if a 
string is generated by the grammar it is accepted by the PDA.
Proof of Lemma 2:  We do induction on the number of steps in the 

grammar derivation [qXp]֜
∗

w.  
Base case:  1 step.  There must  be a rule [qXp]=>a, so it must come 
from a transition 

pa,X|eq

So (q,a,X) ֜
∗

(p,e,e) 



Inductive case: Suppose this is true of all derivations of n or fewer 
steps and we have one with n+1 steps.
The first step must have the form [qXp]=>a[ry1r1][r1Y2r2]...[rk-1Ykp]

For this to be a grammar rule the PDA must have a transition

pa,X|Y1..Ykq

Each [ri-1Yiri] symbol must generate a string of terminal symbols; call 
this string wi.

By induction (ri-1,wi, yi) ֜
∗

(ri,e,e)



In other words the automaton goes through a series of transitions:

ra,X|Y1..Ykq pr1 r2
w1 pops Y1

off the 
stack

w2 pops Y2

off the 
stack

wk pops Yk

off the 
stack

i.e., aw1w2..wk takes the automaton from q to p while popping X 
off the stack.


